已知函數(shù)f(x)=ax^3+bx²,曲線y=f(x)過(guò)點(diǎn)P(-1,2),且在點(diǎn)P處的切線恰好與直線x-3y=0垂直.
已知函數(shù)f(x)=ax^3+bx²,曲線y=f(x)過(guò)點(diǎn)P(-1,2),且在點(diǎn)P處的切線恰好與直線x-3y=0垂直.
(1)求a、b的值,并求f(x)的單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間【m-1,m]上單調(diào)遞減,求實(shí)數(shù)m的取值范圍.
1、f'(x)=3ax²+2bx,因點(diǎn)(-1,2)在曲線上,得:
f(-1)=2 ===>>>-a+b=2 ------------------------------------(*)
又:f(x)在點(diǎn)x=-1處的切線斜率k=f'(-1)=3a-2b=-3 ----------------(**)
解上述方程組,得:a=1,b=3
則:f(x)=x³+3x²
f'(x)=3x²+6x=3x(x+2),則:
f(x)在(-∞,-2)上遞增,在(-2,0)上遞減,在(0,+∞)上遞增.
2、若f(x)在[m-1,m]上遞減,則:
-2≤m-1
解得:-1≤m≤0