要證明
Sn+1 |
Sn |
3n+1 |
n |
3n+1?1 |
3n?1 |
3n+1 |
n |
(方法一)用數(shù)學(xué)歸納法證明
①當(dāng)n=1時(shí),左邊=3,右邊=3,所以(*)式成立
②假設(shè)當(dāng)n=k時(shí)(*)成立,即3k≥2k+1
那么當(dāng)n=k+1時(shí),3k+1=3×3k≥3(2k+1)=6k+3≥2k+3=2(k+1)+1
所以當(dāng)n=k+1時(shí)(*)也成立
綜合①②可得,3n≥2n+1
Sn+1 |
Sn |
3n+1 |
n |
(法二)當(dāng)n=1時(shí),左邊=4,右邊=4,所以(*)成立
當(dāng)n≥2時(shí),3n=(1+2)n=Cn0+2Cn1+22Cn2+…+2nCnn=1+2n+…>1+2n
所以
Sn+1 |
Sn |
3n+1 |
n |