a |
x |
1 |
x |
a |
x2 |
x?a |
x2 |
(1)當(dāng)a≤0時(shí),∴f'(x)≥0故函數(shù)在其定義域(0,+∞)上是單調(diào)遞增的. …(3分)
當(dāng)a>0時(shí),函數(shù)在(0,a)上是單調(diào)遞減的,在(a,+∞)上是單調(diào)遞減的…(5分)
(2)在[1,e]上,分別進(jìn)行討論.
①當(dāng)a<1時(shí),f'(0)>0,函數(shù)f(x)單調(diào)遞增,其最小值為f(1)=a<1,這與函數(shù)f(x)在[1,e]上的最小值是
3 |
2 |
②當(dāng)a=1時(shí),函數(shù)f(x)單調(diào)遞增,其最小值為f(1)=1,函數(shù)f(x)在[1,e]上的最小值是
3 |
2 |
③當(dāng)1<a<e,函數(shù)f(x)在[1,a]上f'(x)<0,函數(shù)單調(diào)遞減,在(a,e)上有f'(x)>0,此時(shí)喊得單調(diào)遞增,
所以函數(shù)f(x)滿足最小值為f(a)=lna+1=
3 |
2 |
解得a=
e |
④當(dāng)a=e時(shí),函數(shù)f(x)在[1,a]上f'(x)<0,函數(shù)單調(diào)遞減,其最小值為f(e)=2,與條件矛盾.
⑤當(dāng)a>e時(shí),函數(shù)f(x)在[1,e]上f'(x)<0,函數(shù)單調(diào)遞減,其最小值為f(e)=1+
a |
e |
綜上所述,a=
e |