AC |
BC |
(3sinα-4)2+(3sinα)2=(3cosα)2+(3sinα-4)2
即sinα=cosα,所以tanα=1,
因為a∈(-π,0),所以α=?
3π |
4 |
(2)由已知
AC |
BC |
(3cosα-4,3sinα)?(3cosα,3sinα-4)
=9cos2α-12cosα+9sin2α-12sinα
=9-12(sinα+cosα)=0
所以sinα+cosα=
3 |
4 |
平方得1+2sinα?cosα=
9 |
16 |
所以2sinα?cosα=?
7 |
16 |
又因為
2sin2a+sin2a |
1+tana |
2sin2α+2sinαcosα | ||
1+
|
=
2sinαcosα(sinα+cosα) |
sinα+cosα |
7 |
16 |