數(shù)學(xué)家高斯在上學(xué)時(shí)曾經(jīng)研究過這樣一個(gè)問題,1+2+3+…+10=?
經(jīng)過研究,這個(gè)問題的一般性結(jié)論是1+2+3+…+n=
n(n+1),其中n為正整數(shù),現(xiàn)在我們來研究一個(gè)類似的問題:1×2+2×3+…+n(n+1)=?
觀察下面三個(gè)特殊的等式:
1×2=n(1×2×3-0×1×2)
2×3=x(2×3×4-1×2×3)
3×4=n(3×4×5-2×3×4)
將這三個(gè)等式的兩邊相加,可以得到1×2+2×3+3×4=m×3×4×5=20.
讀完這段材料,請(qǐng)你計(jì)算:
(1)1×2+2×3+…+100×101=______;(直接寫出結(jié)果)
(2)1×2+2×3+…+n(n+1);(寫出計(jì)算過程)
(3)1×2×3+2×3×4+…+n(n+1)(n+2)=______.
(1)∵1×2+2×3+3×4=m×3×4×5=
×4×5=20,
∴1×2+2×3+…+100×101=
×100×101×102=343400;
(2)∵1×2=n(1×2×3-0×1×2)=
(1×2×3-0×1×2),
2×3=x(2×3×4-1×2×3)=
(2×3×4-1×2×3),
3×4=n(3×4×5-2×3×4)=
(3×4×5-2×3×4),
…
n(n+1)=
[n(n+1)(n+2)-(n-1)n(n+1)],
∴1×2+2×3+…+n(n+1)=
[1×2×3-0×1×2+2×3×4-1×2×3+3×4×5-2×3×4+…+n(n+1)(n+2)-(n-1)n(n+1)],
=
n(n+1)(n+2);
(3)根據(jù)(2)的計(jì)算方法,1×2×3=n(1×2×3×4-0×1×2×3)=
(1×2×3×4-0×1×2×3),
2×3×4=x(2×3×4×5-1×2×3×4)=
(2×3×4×5-1×2×3×4),
…
n(n+1)(n+2)=
[n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)],
∴1×2×3+2×3×4+…+n(n+1)(n+2)=
(1×2×3×4-0×1×2×3+2×3×4×5-1×2×3×4+…+n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)],
=
n(n+1)(n+2)(n+3).
故答案為:(1)343400;(2)
n(n+1)(n+2);(3)
n(n+1)(n+2)(n+3).