∴AB=AD,AE=AC,∠BAD=∠BDA=∠DBA=∠CAE=60°,
∴∠BAC+∠CAE=∠BAC+∠BAD,
即∠BAE=∠DAC.
在△ABE和△ADC中
∵
|
∴△ABE≌△ADC(SAS),
∴BE=DC.
(2)由(1)知:△ABE≌△ADC,
∴∠ADC=∠ABE
∴∠ADC+∠BDO=∠ABE+∠BDO=∠BDA=60°
∴在△BOD中,∠BOD=180°-∠BDO-∠DBA-∠ABE
=180°-∠DBA-(∠ADC+∠BDO)
=180°-60°-60°
=60°.
(3)證明:過(guò)點(diǎn)A分別作AM⊥BE,AN⊥DC,垂足為點(diǎn)M,N.
∵由(1)知:△ABE≌△ADC,
∴S△ABE=S△ADC
∴
1 |
2 |
1 |
2 |
∴AM=AN
∴點(diǎn)A在∠DOE的平分線上,
即OA平分∠DOE.