(1)當(dāng)a=
1 |
6 |
令f′(x)=2(x-1)2(x+2)=0,∴x1=1,x2=-2
∵函數(shù)在(-∞,-2)上單調(diào)減,在(-2,1)上單調(diào)增,在(1,+∞)上單調(diào)增
∴函數(shù)的極值點是x=-2,f(x)的極值為-12;
(2)假設(shè)f(x)在(-1,1)上是增函數(shù),則f′(x)=12ax3-4(3a+1)x+4≥0在(-1,1)上恒成立
∴3ax2+3ax-1≤0在(-1,1)上恒成立
令g(x)=3ax2+3ax-1,則
|
|
∴
|
|
∴-
4 |
3 |
1 |
6 |
∴f(x)在(-1,1)上不是增函數(shù),a的取值范圍為(-∞,-
4 |
3 |
1 |
6 |