由f'(0)=f'(2)=1即
|
|
所以f(x)的解析式為f(x)=
1 |
3 |
(Ⅱ)若b=a+2,則f'(x)=x2-2ax+a+2,△=4a2-4(a+2),
(1)當(dāng)△≤0,即-1≤a≤2時,f'(x)≥0恒成立,那么f(x)在R上單調(diào)遞增,
所以,當(dāng)-1≤a≤2時,f(x)在區(qū)間(0,1)上單調(diào)遞增;
(2)當(dāng)△>0,即a>2或a<-1時,
因?yàn)閒'(x)=x2-2ax+a+2的對稱軸方程為x=a
要使函數(shù)f(x)在區(qū)間(0,1)上單調(diào)遞增,
需
|
|
解得-2≤a<-1或2<a≤3.
綜上:當(dāng)a∈[-2,3]時,函數(shù)f(x)在區(qū)間(0,1)上單調(diào)遞增.