設(shè)項(xiàng)數(shù)為奇數(shù)的等差數(shù)列,奇數(shù)項(xiàng)之和為44,偶數(shù)項(xiàng)之和為33,求這個(gè)數(shù)列的中間項(xiàng)及項(xiàng)數(shù).
設(shè)項(xiàng)數(shù)為奇數(shù)的等差數(shù)列,奇數(shù)項(xiàng)之和為44,偶數(shù)項(xiàng)之和為33,求這個(gè)數(shù)列的中間項(xiàng)及項(xiàng)數(shù).
優(yōu)質(zhì)解答
設(shè)等差數(shù)列{a
n}項(xiàng)數(shù)為2n+1,
S
奇=a
1+a
3+…+a
2n+1=
=(n+1)an+1,
S
偶=a
2+a
4+a
6+…+a
2n=
=nan+1,
∴
==,解得n=3,
∴項(xiàng)數(shù)2n+1=7,
又因?yàn)镾
奇-S
偶=a
n+1=a
中,
所以a
4=S
奇-S
偶=44-33=11,
所以中間項(xiàng)為11.
我來(lái)回答
類(lèi)似推薦
- 設(shè)項(xiàng)數(shù)為奇數(shù)的等差數(shù)列,奇數(shù)項(xiàng)之和為44,偶數(shù)項(xiàng)之和為33,求這個(gè)數(shù)列的中間項(xiàng)及項(xiàng)數(shù).
- 項(xiàng)數(shù)為奇數(shù)的等差數(shù)列,奇數(shù)項(xiàng)之和為44,偶數(shù)項(xiàng)之和為33,求這個(gè)數(shù)列的中間項(xiàng)及項(xiàng)數(shù).
- 若等差數(shù)列共有2n+1項(xiàng)(n∈N*),且奇數(shù)項(xiàng)的和為44,偶數(shù)項(xiàng)的和為33,則項(xiàng)數(shù)為( ?。?A.5 B.7 C.9 D.11
- 若等差數(shù)列an的項(xiàng)數(shù)為奇數(shù) 各奇數(shù)項(xiàng)之和為44,各偶數(shù)項(xiàng)之和為33,則中間一項(xiàng)及項(xiàng)數(shù)分別為
- 有一列項(xiàng)數(shù)為奇數(shù)的等差數(shù)列,其中奇數(shù)項(xiàng)之和為44,偶數(shù)項(xiàng)之和為33,則項(xiàng)數(shù)為_(kāi),中間項(xiàng)為_(kāi).
- 氧化鈣是酸性的還是堿性的?
- 求解高數(shù)一題:哪位好心人能幫幫我?
- 高斯公式是什么?
- do 和are的區(qū)別
- 如圖所示,在直角梯形ABCD中,∠A=∠B=90°,AD∥BC,E為AB上一點(diǎn),DE平分∠ADC,CE平分∠BCD,以AB為直徑的圓與邊CD有怎樣的位置關(guān)系?
- 13.如圖10,在⊙O中,弦AB與DC相交于點(diǎn)E,AB=CD.求證:△AEC≌△DEB.3Q
- 已知原X2+Y2=1,從這個(gè)圓上任意一點(diǎn)P向Y軸作垂線(xiàn)段PP1,求線(xiàn)段PP1的中點(diǎn)軌跡