![](http://a.hiphotos.baidu.com/zhidao/wh%3D600%2C800/sign=87f37009c8fcc3ceb495c135a275fab0/d4628535e5dde711500cbfdda7efce1b9d16613b.jpg)
\x0d如圖,ABCD是邊長為a的正方形.\x0dAEFG是邊長為2b的正方形.\x0dAGJH是邊長為2b的正方形.\x0d\x0d我們先證明S1和S3兩個矩形面積相等.\x0d顯然,JG = FE = 2b\x0dDG = AD-AG = (a-2b)\x0dEB = AB-AE = (a-2b)\x0d即:DG = EB\x0d可見,S1、S3長寬都相等,所以面積相等.\x0d\x0dS1+S2 = IC*IJ = (a+2b)(a-2b)\x0d\x0dS3+S2 = (S2+S3+S4)-S4\x0d= ABCD的面積 - AEFG的面積\x0d= a^2 - (2b)^2 = a^2 - 4b^2\x0d\x0d由于:S1 + S2 = S3 + S2\x0d所以:(a+2b)(a-2b) = a^2 - 4b^2