在自然數(shù)集N上定義一個(gè)函數(shù)y=f(x),已知f(1)+f(2)=5.當(dāng)x為奇數(shù)時(shí),f(x+1)-f(x)=1,當(dāng)x為偶數(shù)時(shí)f(x+1)-f(x)=3.
(1)求證:f(1),f(3),f(5),…,f(2n-1)(n∈N+)成等差數(shù)列.
(2)求f(x)的解析式.
(1)由
,解得f(1)=2,f(2)=3.
所以f(2n+1)-f(2n-1)=[f(2n+1)-f(2n)]+[f(2n)-f(2n-1)]=3+1=4,
所以f(1),f(3),f(5),…,f(2n-1)(n∈N
+)成等差數(shù)列,公差為4.
(2)當(dāng)x為奇數(shù)時(shí),f(x)=[f(x)-f(x-1)]+[f(x-1)-f(x-2)]+…+[f(2)-f(1)]+f(1)=
+2=2x,
當(dāng)x為偶數(shù)時(shí),f(x)=[f(x)-f(x-1)]+[f(x-1)-f(x-2)]+…+[f(2)-f(1)]+f(1)=
?1+?3+2=2x?1所以f(x)=
| 2x,x為奇數(shù) | 2x?1,x為偶數(shù) |
| |
.