精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 是否存在常數abc,使得等式1*2^2+2*3^2+.+n(n+1)^n=n(n+1)(an^2+bn+c)/12成立?

    是否存在常數abc,使得等式1*2^2+2*3^2+.+n(n+1)^n=n(n+1)(an^2+bn+c)/12成立?
    數學人氣:323 ℃時間:2020-02-03 00:02:57
    優(yōu)質解答
    1*(n^2-1^2)+2*(n^2-2^2)...+n(n^2-n^2)=(1+2+..+n)*n^2-(1^3+2^3+..+n^3)其中:1+2+3+..+n=n*(n+1)/21^3+2^3+...+n^3=[n(n+1)/2]^2 所以:1*(n^2-1^2)+2*(n^2-2^2)...+n(n^2-n^2)=(1+2+..+n)*n^2-(1^3+2^3+..+n^3)=n^3*(n+1)/2 -[n(n+1)/2]^2 =n*(n+1)(2n^2-n^2-n)/4=(n^2+n)(n^2-n)/4 =(n^4-n^2)/4 對比an^4+bn^2+c a=1/4,b=-1/4,c=0所以存在常數a、b、c,使等式1*(n^2-1^2)+2*(n^2-2^2)...+n(n^2-n^2)=an^4+bn^2+c對一切正整數n都成立.補充:1^3+2^3+3^3+……+n^3=[n(n+1)/2]^2(n+1)^4-n^4=[(n+1)^2+n^2][(n+1)^2-n^2]=(2n^2+2n+1)(2n+1)=4n^3+6n^2+4n+12^4-1^4=4*1^3+6*1^2+4*1+13^4-2^4=4*2^3+6*2^2+4*2+14^4-3^4=4*3^3+6*3^2+4*3+1.(n+1)^4-n^4=4*n^3+6*n^2+4*n+1各式相加有(n+1)^4-1=4*(1^3+2^3+3^3...+n^3)+6*(1^2+2^2+...+n^2)+4*(1+2+3+...+n)+n4*(1^3+2^3+3^3+...+n^3)=(n+1)^4-1+6*[n(n+1)(2n+1)/6]+4*[(1+n)n/2]+n=[n(n+1)]^21^3+2^3+...+n^3=[n(n+1)/2]^2
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機版