精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 證明:雙曲線x2a2-y2b2=1(a>0,b>0)上的任一點(diǎn)到兩條漸近線距離之積為定值.

    證明:雙曲線
    x2
    a2
    -
    y2
    b2
    =1(a>0,b>0)上的任一點(diǎn)到兩條漸近線距離之積為定值.
    數(shù)學(xué)人氣:448 ℃時(shí)間:2020-03-24 21:04:30
    優(yōu)質(zhì)解答
    證明:設(shè)雙曲線
    x2
    a2
    -
    y2
    b2
    =1(a>0,b>0)上的任一點(diǎn)(x,y),兩條漸近線方程為bx±ay=0,
    ∴雙曲線
    x2
    a2
    -
    y2
    b2
    =1(a>0,b>0)上的任一點(diǎn)到兩條漸近線距離之積為
    (bx+ay)(bx?ay)
    (
    b2+a2
    )2
    =
    a2b2
    b2+a2
    定值.
    我來(lái)回答
    類似推薦
    請(qǐng)使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點(diǎn),以保證最佳閱讀效果。本頁(yè)提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版