![](http://hiphotos.baidu.com/zhidao/pic/item/b03533fa828ba61e04beff9d4234970a304e592b.jpg)
∴m2-1=0,
解得:m=±1,
∵m-1≠0,
∴m=-1 (3分)
∴此二次函數(shù)的解析式的解析式為:y=-2x2+4x,
∵-2x2+4x=0,
解得:x1=0,x2=2,
∴圖象與x軸的另一交點(diǎn)的坐標(biāo)是(2,0); ?。?分)
(2)∵y=-2x2+4x=-2(x-1)2+2,
∴頂點(diǎn)的橫坐標(biāo)為1,
∴y=
1 |
2 |
1 |
2 |
∴新函數(shù)的頂點(diǎn)坐標(biāo)為(1,
1 |
2 |
∴此時(shí)函數(shù)的解析式為y=-2(x-1)2+
1 |
2 |
(3)能在拋物線的對(duì)稱軸上找一點(diǎn)P,使得PE+PF最短.
∵點(diǎn)E在x軸上,點(diǎn)F在拋物線上,且點(diǎn)E和點(diǎn)F的橫坐標(biāo)都為-2,
∴E(-2,0),
當(dāng)x=-2時(shí),y=-2×(-2)2+4×(-2)=-16,
∴F(-2,-16),
取E關(guān)于拋物線對(duì)稱軸x=1的對(duì)稱點(diǎn)E′(4,0),
連接E′F,交拋物線對(duì)稱軸x=1于P點(diǎn),此時(shí)即為所求,
∵PE+PF=PE′+PF=E′F=
EE′2+EF2 |
162+62 |
73 |
∴最短距離為2
73 |