精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 1.已知f(x)=ax²+bx+c,f(0)=0,且f(x+1)=f(x)+x+1,試求f(x)的表達式.

    1.已知f(x)=ax²+bx+c,f(0)=0,且f(x+1)=f(x)+x+1,試求f(x)的表達式.
    2.已知函數(shù)f(x),g(x)同時滿足:g(x-y)=g(x)g(y)+f(x)f(y);f(-1)=-1,f(0)=0,f(1)=1,求g(1)g(2)g(3)的值. 幫我解下這兩道題,步驟寫詳細點,我是初三升高中,還沒正式上課,盡量寫得通俗易懂.
    數(shù)學(xué)人氣:381 ℃時間:2020-06-25 19:38:44
    優(yōu)質(zhì)解答
    1.在f(x) = ax²+bx+c中取x = 0得c = f(0) = 0,故f(x) = ax²+bx.
    于是f(x+1)-f(x) = a(x+1)²+b(x+1)-(ax²+bx) = a((x+1)²-x²)+b = a(2x+1)+b = 2ax+(a+b).
    而由條件f(x+1)-f(x) = x+1,得x+1 = 2ax+(a+b),即(2a-1)x+(a+b-1) = 0.
    因為對任意x都成立,有2a-1 = 0,a+b-1 = 0,解得a = b = 1/2.
    因此f(x) = 1/2·x²+1/2·x = x(x+1)/2.
    2.代入y = 0得g(x) = g(x)g(0)+f(x)f(0) = g(x)g(0).
    若g(x)恒等于0,有0 = g(x-y) = g(x)g(y)+f(x)f(y) = f(x)f(y).
    但代入x = y = 1得0 = 1,矛盾.因此存在a使g(a) ≠ 0.
    于是由g(a) = g(a)g(0)得g(0) = 1.
    代入x = y = 1得1 = g(0) = g(1)²+f(-1)² = g(1)²+1,即g(1)² = 0,故g(1) = 0.
    代入x = 0,y = 1得g(-1) = g(0)g(1)+f(0)f(1) = 0.
    代入y = -1得g(x+1) = g(x)g(-1)+f(x)f(-1) = -f(x),即有g(shù)(x) = -f(x-1).
    代入y = 1得g(x-1) = g(x)g(1)+f(x)f(1) = f(x),即有g(shù)(x-2) = f(x-1).
    于是g(x) = -g(x-2).
    代入x = 2得g(2) = -g(0) = -1,而代入x = 3得g(3) = -g(1) = 0.
    因此g(1) = 0,g(2) = -1,g(3) = 0.
    注:實際上g(x) = cos(πx/2),f(x) = sin(πx/2)是一組滿足條件的函數(shù).
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機版