精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 數(shù)學(xué)高手 請舉手之勞 數(shù)學(xué)題:設(shè)S1=1+1/1^2+1/2^2,S2=1+1/2^2+1/3^2,S3=1+1/3^2+1/4^2.Sn=1+1/n^2

    數(shù)學(xué)高手 請舉手之勞 數(shù)學(xué)題:設(shè)S1=1+1/1^2+1/2^2,S2=1+1/2^2+1/3^2,S3=1+1/3^2+1/4^2.Sn=1+1/n^2
    設(shè)S1=1+1/1^2+1/2^2,S2=1+1/2^2+1/3^2,S3=1+1/3^2+1/4^2.Sn=1+1/n^2+1/(n+1)^2.設(shè)S=√S1+√S2+√S3+.+√Sn,則S=? (用含n的代數(shù)式表示,其中n為正整數(shù))
    數(shù)學(xué)人氣:440 ℃時間:2020-01-30 06:14:05
    優(yōu)質(zhì)解答
    因為Sn=1+1/n^2+1/(n+1)^2=(n^4+2n^3+3n^2+2n+1)/(n^2*(n+1)^2)=(n*(n+1)+1)^2/(n^2*(n+1)^2)所以√Sn=√(n*(n+1)+1)^2/(n^2*(n+1)^2)=[n(n+1)+1]/[n(n+1)]所以S=3/2+7/6+13/12+...+[n(n+1)+1]/[n(n+1)]=(1+1/2)+(1+...
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機版