在n≥2時,an=sn-sn-1=(-1)n(2n2+4n+1)-(-1)n-1[2(n-1)2+4(n-1)+1]=(-1)n?4n(n+1),
而n=1時,a1=-8滿足an=(-1)n4n(n+1),故所求數(shù)列{an}通項(xiàng)an=(-1)n4n(n+1).
(2)∵bn=
(?1)n |
an |
1 |
4n(n+1) |
1 |
4 |
1 |
n |
1 |
n+1 |
因此數(shù)列{bn}的前n項(xiàng)和Tn=
1 |
4 |
1 |
n+1 |
4n |
n+1 |
(?1)n |
an |
(?1)n |
an |
1 |
4n(n+1) |
1 |
4 |
1 |
n |
1 |
n+1 |
1 |
4 |
1 |
n+1 |
4n |
n+1 |