精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 設(shè)f(x)是一次函數(shù),f(1)=1,且f(2),f(3)+1,f(5)成等差數(shù)列,若an=f(n),n屬于非零自然數(shù)

    設(shè)f(x)是一次函數(shù),f(1)=1,且f(2),f(3)+1,f(5)成等差數(shù)列,若an=f(n),n屬于非零自然數(shù)
    1.求證集合an是等差數(shù)列
    2.在集合an沒(méi)相鄰兩項(xiàng)之間插入2個(gè)數(shù),構(gòu)成一個(gè)新的等差數(shù)列{bn},求數(shù)列{bn}的錢n項(xiàng)和Bn
    3.設(shè)cn=2^(3bn-1),n屬于非零自然數(shù),求數(shù)列{cn}的前n項(xiàng)和Cn
    數(shù)學(xué)人氣:369 ℃時(shí)間:2020-04-19 00:55:38
    優(yōu)質(zhì)解答
    1.設(shè) f (x) = ax + b; f(1) = a+b = 1
    由題意:f (2) + f(5) = 2 x (f (3) + 1)
    故 (2a+b) + (5a+b) = 2 x (3a + b + 1),7a + 2b = 6a + 2b + 2,a = 2,b = -1
    所以 f(x) = 2x - 1
    對(duì)于任何一個(gè) N (正整數(shù)),有 2f(N) = 4 N - 2 = (2(N-1)-1) + (2(N+1)-1) = f(N-1) + f(N+1)
    所以an = f(N) 為等差數(shù)列
    2.f(x) = 2x-1,f(x+1) = 2x + 1,
    中間插入兩個(gè)數(shù)字并保持等差,所以差值d為 2/3,
    設(shè)bn = g(n) = 2/3 n + x,由 a(1) = b(1) = 1,有 x = 1/3
    所以構(gòu)造成 bn = g(n) = 2/3 n +1/3,
    Bn = b1 + b2 + ...+ bn
    = (b1 + bn)*n/2 = (1 + 2/3 n + 1/3) * n /2 = 1/3 n^2 + 2/3 n
    3.3bn-1 = 3*(2/3n+1/3) = 2n+1
    cn = 2^(2n+1)
    Cn = c1 + c2 + ...+ cn
    = (2^2 - 1) * (cn + ...+ c1) / (2^2 -1)
    = c(n+1) - cn + cn - c(n-1) + ...+ c2 - c1)
    = (c(n+1) - c1) / 3
    = (2^ (2n+3) - 8) / 3
    我來(lái)回答
    類似推薦
    請(qǐng)使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點(diǎn),以保證最佳閱讀效果。本頁(yè)提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版