精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 若f(x)在[0,1]上有二階導數(shù),且f(1)=f(0)=0,F(x)=x^2f(x),證明在(0,1)內(nèi)至少有一點a,使得F''(a)=0.

    若f(x)在[0,1]上有二階導數(shù),且f(1)=f(0)=0,F(x)=x^2f(x),證明在(0,1)內(nèi)至少有一點a,使得F''(a)=0.
    數(shù)學人氣:537 ℃時間:2019-08-19 08:05:26
    優(yōu)質(zhì)解答
    F(x)=x^2f(x)
    F(0)=0 F(1)=0
    所以在(0,1)內(nèi)至少有一點ξ1,使得F'(ξ1)=0.
    F'(x)=2xf(x)+x^2f'(x)
    F'(ξ1)=0 F'(0)=0
    所以在(0,ξ1)內(nèi)至少有一點a,使得F''(a)=0.
    就是兩次運用羅爾定理
    我來回答
    類似推薦
    請使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點,以保證最佳閱讀效果。本頁提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機版