a1 |
b1 |
S1 |
T1 |
52 |
4 |
設(shè)等差數(shù)列{an}和{bn}的公差分別為d1 和d2,
由
S2 |
T2 |
a1+a1+d 1 |
b1+b1 +d 2 |
14+45 |
2+3 |
59 |
5 |
再由
S3 |
T3 |
3a1+3d 1 |
3b1+3d 2 |
21+45 |
3+3 |
解①②求得 b1=2d2,d1=7d2.故有 a1=26d2.
由于
an |
b2n |
a1 +(n?1)d 1 |
b1+ (2n?1)d 2 |
26d2 +(n?1)?7d 2 |
2d2+ (2n?1)d 2 |
7n+19 |
2n+1 |
∴n=15,
故答案為 15.