在⊙O的內(nèi)接△ABC中,AB+AC=12,AD⊥BC,垂足為D,且AD=3,設(shè)⊙O的半徑為y,AB的長(zhǎng)為x.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)AB的長(zhǎng)等于多少時(shí),⊙O的面積最大,并求出⊙O的最大面積.
(1)作直徑AE,連接CE,如圖所示,則∠ACE=90°,
∵AD⊥BC,∴∠ACE=∠ADB=90度.
又∠B=∠E,
∴△ABD∽△AEC.
∴
=,即
=.
整理得y=
?(x-6)
2+6.
(2)由(1)知y=
?(x-6)
2+6,則當(dāng)x=6時(shí),y取得最大值,最大值為6.
∴⊙O的最大面積為36π.