精品偷拍一区二区三区,亚洲精品永久 码,亚洲综合日韩精品欧美国产,亚洲国产日韩a在线亚洲

  • <center id="usuqs"></center>
  • 
    
  • 求導(dǎo),求極限

    求導(dǎo),求極限
    1.已知f(x)= x^2sin(1/x)x不等于0時(shí), f(x)=0 x=0時(shí). 求f'(x)
    2.求極限:lim(x->0)[(e^x-1-x)^2/tan(sinx)^2]
    數(shù)學(xué)人氣:273 ℃時(shí)間:2020-05-29 23:12:57
    優(yōu)質(zhì)解答
    1.已知f(x)= x^2sin(1/x) x不等于0時(shí),f(x)=0 x=0時(shí).求f'(x)
    x不等于0時(shí),f'(x) = 2xsin(1/x) + x^2cos(1/x)*(-1/x^2)
    = 2xsin(1/x) - cos(1/x)
    x = 0 時(shí),
    lim_{x->0} [f(x)] = lim_{x->0}[x^2sin(1/x)] = 0 = f(0),
    所以,f(x)在 x = 0處連續(xù).
    lim_{x->0}{[f(x) - f(0)]/(x-0)} = lim_{x->0}[x^2sin(1/x)/x]
    = lim_{x->0}[xsin(1/x)] = 0
    所以,f(x)在 x = 0處可導(dǎo),f'(0) = 0.
    綜合,有,
    x不等于0時(shí),f'(x) = 2xsin(1/x) - cos(1/x)
    x = 0 時(shí),f'(0) = 0.
    2.求極限:lim(x->0)[(e^x-1-x)^2/tan(sinx)^2]
    lim_{x->0}[(e^x-1-x)^2/tan(sinx)^2]
    = lim_{x->0}[(e^x-1-x)^2/(sinx)^2][(sinx)^2/tan(sinx)^2]
    = lim_{x->0}[(e^x-1-x)^2/(sinx)^2]
    = lim_{x->0}[(e^x-1-x)^2/x^2] [x^2/(sinx)^2]
    = lim_{x->0}[(e^x-1-x)^2/x^2]
    = lim_{x->0}[2(e^x-1-x)(e^x - 1)/(2x)]
    = lim_{x->0}[e^x-1-x][(e^x - 1)/x]
    = lim_{x->0}[e^x-1-x]
    = 1 - 1 - 0
    = 0.
    我來(lái)回答
    類(lèi)似推薦
    請(qǐng)使用1024x768 IE6.0或更高版本瀏覽器瀏覽本站點(diǎn),以保證最佳閱讀效果。本頁(yè)提供作業(yè)小助手,一起搜作業(yè)以及作業(yè)好幫手最新版!
    版權(quán)所有 CopyRight © 2012-2024 作業(yè)小助手 All Rights Reserved. 手機(jī)版