∵f((X1+X2)/2)=a[(x1+x2)/2]^2+(x1+x2)/2,(f(X1)+f(X2))/2=[(ax1)^2+x1+a(x2)^2+x2]/2,∴兩式相減并整理等于-a(x1-x2)^2,該式小于等于0恒成立,∴f((X1+X2)/2)≤(f(X1)+f(X2))/2,∴函數(shù)f(x)為R上的凹函數(shù).
本題應(yīng)用了作差與零比較,從而確定兩式的大小.(作差比較法)
已知f(x)是定義域在R上的函數(shù),若對任意X1,X2屬于R,都有f((X1+X2)/2)小于等于(f(X1)+f(X2))/2成立,則稱f(x)為R上的凹函數(shù),設(shè)二次函數(shù)f(x)=ax^2+x (a屬于R,且a不等于0),求證當a大于0時,
已知f(x)是定義域在R上的函數(shù),若對任意X1,X2屬于R,都有f((X1+X2)/2)小于等于(f(X1)+f(X2))/2成立,則稱f(x)為R上的凹函數(shù),設(shè)二次函數(shù)f(x)=ax^2+x (a屬于R,且a不等于0),求證當a大于0時,函數(shù)f(x)為R上的凹函數(shù)
數(shù)學人氣:145 ℃時間:2019-12-05 07:29:24
優(yōu)質(zhì)解答
我來回答
類似推薦
- 已知函數(shù)f(x)的定義域x∈R且x≠0,對定義域內(nèi)的任意x1,x2都有f(x1·x2﹚
- 已知函數(shù)y=f(x)是定義域為R,對任意x1,x2
- 已知函數(shù)f(x)定義域為{x|x≠0,x∈R}},對定義域的任意x1,x2都有f(x1乘x2)=f(x1)+f(x2)且當x>1時,f(x)大于0
- 函數(shù)f(x)的定義域為{x|x≠0},且滿足對于定義域內(nèi)任意的x1,x2都有等式f(x1?x2)=f(x1)+f(x2) (1)求f(1)的值; (2)判斷f(x)的奇偶性并證明; (3)若f(4)=1,且f(x)在(0,+
- 已知定義在區(qū)間(0,+∞)上的函數(shù)f(x)滿足f(x1x2)=f(x1)-f(x2),且當x>1時,f(x)<0. ①求f(1)的值; ②判斷f(x)的單調(diào)性; ③若f(3)=-1,解不等式f(|x|)<-2.
- 多項式
- 描寫樹的形容詞(可以是描寫它的品質(zhì) 精神 也可以是樣子)
- 在動物體內(nèi)糖原和脂肪都是儲能物質(zhì),但為什么是脂肪作為主要的儲能物質(zhì)呢?
- 0.3比0.45比0.1 4比6比16
- 在某塔塔底所在平面上一點仰角為a,由此點向塔直走30米后,測得仰角為2a,再沿直線走15(根號3—1)米后,又
- 12和20這兩個數(shù)的最大公因數(shù)是,最小公倍數(shù)是
- 如圖,在△ABC中,AC=BC,D是BC上的一點,且滿足∠BAD=1/2∠C,以AD為直徑的⊙O與AB、AC分別相交于點E、F. (1)求證:直線BC是⊙O的切線;(2)連接EF,若tan∠AEF=4/3,AD=4,求BD的長.
猜你喜歡
- 1已知a小于0,負b大于0,且負b的絕對值小于a的絕對值,c是負b的相反數(shù),試比較a,負b,c的大小,并用小于號連接.
- 2your performance是什么意思?
- 3英語同義句I spend an hour reading English every day
- 4青蛙是怎樣發(fā)聲的?
- 5錯在課外閱讀 作文 按要求寫句子
- 6已知向量a=(sinωx+cosωx,sinωx),向量b=(sinωx-cosωx,2√3cosωx)
- 7六(2)班第一次數(shù)學測試,及格的有48人,不及格的有2人.則這次數(shù)學測試的及格率為_.
- 8甲乙丙丁4個數(shù)都能不是0,甲除乙是0.5,丁除乙是1.1,丙除0.4等于乙,甲除1.25等于丙,比較甲乙丙丁大小
- 9如圖,已知空間四邊形ABCD,E,F(xiàn)分別是AB,AD的中點,G,H分別是BC,CD上的點,且BG/GC=DH/HC=2,求證:EG,F(xiàn)H,AC相交于同一點P.
- 10How are you feeling now? I'm feeling even ____.
- 11為了鼓勵人們節(jié)約用水,思源市今年四月份頒布了居民用水收費新標準,具體收費標準如下:
- 12家里人都在看電視,只有我一人在寫作業(yè).(修改病句)